Total Synthesis of Amphidinolide F

Galle Valot, Christopher S. Regens, Daniel P. OMalley, Edouard Godineau, Hiroshi Takikawa, and Alois Frstner*

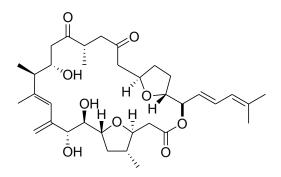
Angew. Chem. Int. Ed. 2013, 52, 9534-9538

amphidinolide F

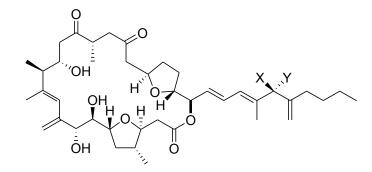
Feng Zhang
Wipf Group Current Literature
Sep. 21, 2013

Feng Zhang @ Wipf Group Page 1 of 12 09/21/2013

Introduction


Marine dinoflagellates

Marine dinoflagellates have proved to be a subject of considerable attention as a new valuable source of bioactive compounds.


More than thirty macrolides have been isolated from different strains, which are collectively called amphidinolides.

Most of them exhibiting a potent cytotoxicity against human cancer cell lines in micromolar, nanomolar, or even subpicomolar concentrations in vitro.

In 1991, a new natural product Amphidinolide F was isolated from a dinoflagellate of the genus Amphidinium which was associated with the Okinawan flatworm Amphiscolops magniviridis and a different species from those reported previously.

amphidinolide F

amphidinolide C: X = OH, Y = H amphidinolide C2: X = OAc, Y = H amphidinolide C3: X, Y = O

cytotoxic activity (IC50)

	Isolation yield (%)	murine lymphoma LI210 cells	human epidermoid carcinoma KB cells
Amphidinolide F	0.0006	1.5 μg/mL	3.2 μg/mL
Amphidinolide C	0.0015	5.8 ng/mL	4.6 ng/mL
Amphidinolide C 2	0.00015	0.8 μg/mL	3.0 μg/mL
Amphidinolide C 3	0.00006	7.6 μg/mL	10.0 μg/mL

Feng Zhang @ Wipf Group Page 3 of 12 09/21/2013

Due to their impressive potential bioactivity, unique structure, and low natural accessibility, total synthesis therefore becomes an important potential source.

20 years passed since Amphidinolide F was isolated, no total synthesis was reported until 2012 (totally 34 steps).

Feng Zhang @ Wipf Group Page 4 of 12 09/21/2013

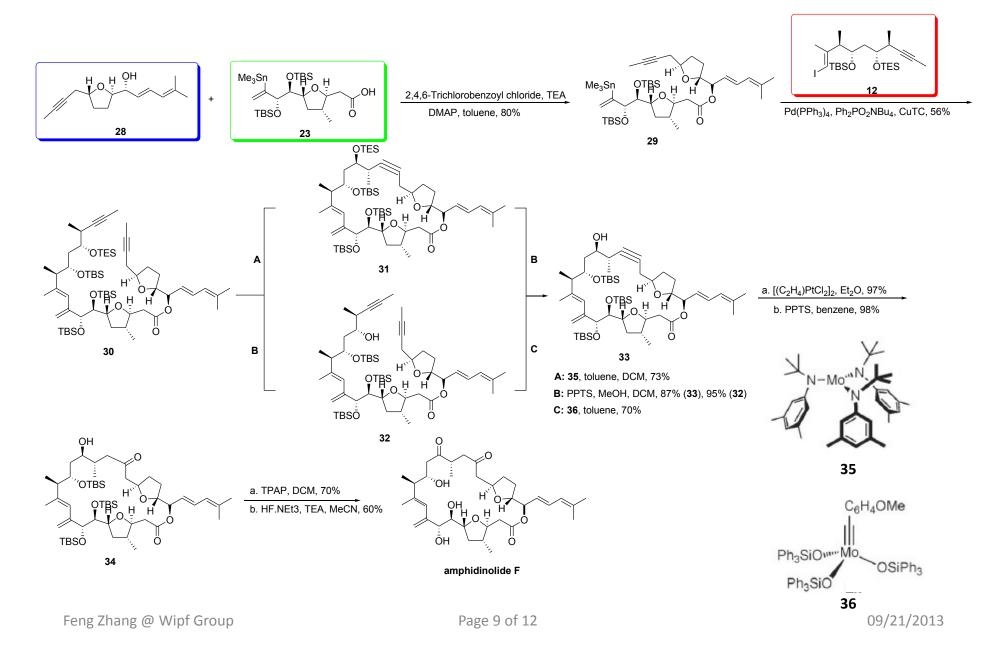
amphidinolide F

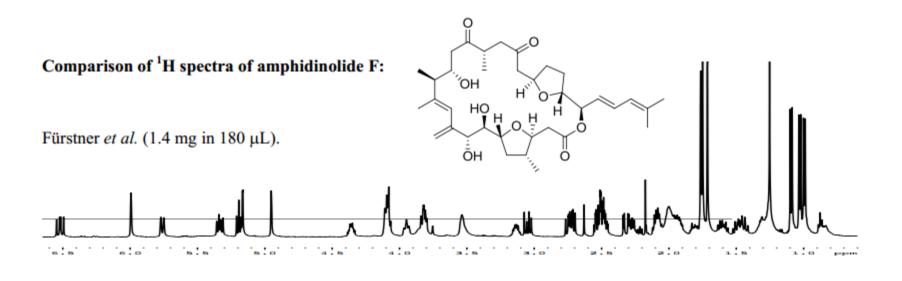
Retrosynthetic analysis

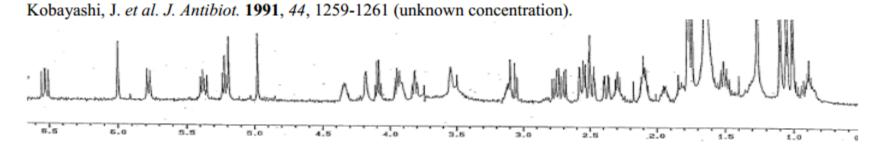
Feng Zhang @ Wipf Group Page 5 of 12 09/21/2013

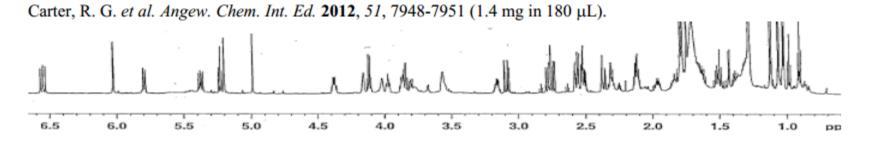
The synthetic method for the fragment D

Feng Zhang @ Wipf Group Page 6 of 12 09/21/2013


The synthetic method for the fragment E


Feng Zhang @ Wipf Group Page 7 of 12 09/21/2013


The synthetic method for the fragment F


Feng Zhang @ Wipf Group Page 8 of 12 09/21/2013

Fragment Coupling and Completion of the Total Synthesis

Feng Zhang @ Wipf Group

Page 10 of 12

09/21/2013

Conclusions

- No more than 21 steps and therefore compares favorably with the only other completed approach known in the literature.
- A late-stage interplay of ring-closing alkyne metathesis (RCAM) and π -acid catalysis nicely solved the selectivity issue arising from the unusual 1,4-dioxygenation pattern decorating the targets polyfunctional backbone.
- The success of this strategy showcases the maturity of these methods and augurs well for future applications.

Feng Zhang @ Wipf Group Page 11 of 12 09/21/2013

Thanks!

Feng Zhang @ Wipf Group Page 12 of 12 09/21/2013